Semi-intrinsic Mean Shift on Riemannian Manifolds
نویسندگان
چکیده
The original mean shift algorithm [1] on Euclidean spaces (MS) was extended in [2] to operate on general Riemannian manifolds. This extension is extrinsic (Ext-MS) since the mode seeking is performed on the tangent spaces [3], where the underlying curvature is not fully considered (tangent spaces are only valid in a small neighborhood). In [3] was proposed an intrinsic mean shift designed to operate on two particular Riemannian manifolds (IntGS-MS), i.e. Grassmann and Stiefel manifolds (using manifold-dedicated density kernels). It is then natural to ask whether mean shift could be intrinsically extended to work on a large class of manifolds. We propose a novel paradigm to intrinsically reformulate the mean shift on general Riemannian manifolds. This is accomplished by embedding the Riemannian manifold into a Reproducing Kernel Hilbert Space (RKHS) by using a general and mathematically well-founded Riemannian kernel function, i.e. heat kernel [4]. The key issue is that when the data is implicitly mapped to the Hilbert space, the curvature of the manifold is taken into account (i.e. exploits the underlying information of the data). The inherent optimization is then performed on the embedded space. Theoretic analysis and experimental results demonstrate the promise and effectiveness of this novel paradigm.
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملOperator-valued tensors on manifolds
In this paper we try to extend geometric concepts in the context of operator valued tensors. To this end, we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra, and reach an appropriate generalization of geometrical concepts on manifolds. First, we put forward the concept of operator-valued tensors and extend semi-Riemannian...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملLeast-Squares Log-Density Gradient Clustering for Riemannian Manifolds
Mean shift is a mode-seeking clustering algorithm that has been successfully used in a wide range of applications such as image segmentation and object tracking. To further improve the clustering performance, mean shift has been extended to various directions, including generalization to handle data on Riemannian manifolds and extension to directly estimating the log-density gradient without de...
متن کامل